- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Böckle, Gebhard (2)
-
Harris, Michael (2)
-
Thorne, Jack A. (2)
-
Allen, Patrick (1)
-
Calegari, Frank (1)
-
Caraiani, Ana (1)
-
Feng, Tony (1)
-
Gee, Toby (1)
-
HARRIS, Michael (1)
-
Helm, David (1)
-
KHARE, Chandrashekhar B. (1)
-
Khare, Chandrashekhar (1)
-
Khare, Chandrashekhar B (1)
-
Le Hung, Bao (1)
-
Miagkov, Konstantin (1)
-
Newton, James (1)
-
Scholze, Peter (1)
-
THORNE, Jack A. (1)
-
Taylor, Richard (1)
-
Thorne, Jack (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Let$$G$$be a split semisimple group over a global function field$$K$$. Given a cuspidal automorphic representation$$\Pi$$of$$G$$satisfying a technical hypothesis, we prove that for almost all primes$$\ell$$, there is a cyclic base change lifting of$$\Pi$$along any$$\mathbb {Z}/\ell \mathbb {Z}$$-extension of$$K$$. Our proof does not rely on any trace formulas; instead it is based on using modularity lifting theorems, together with a Smith theory argument, to obtain base change for residual representations. As an application, we also prove that for any split semisimple group$$G$$over a local function field$$F$$, and almost all primes$$\ell$$, any irreducible admissible representation of$$G(F)$$admits a base change along any$$\mathbb {Z}/\ell \mathbb {Z}$$-extension of$$F$$. Finally, we characterize local base change more explicitly for a class of toral representations considered in work of Chan and Oi.more » « less
-
Miagkov, Konstantin; Thorne, Jack A. (, Forum of Mathematics, Sigma)Abstract Let F be a CM number field. We generalise existing automorphy lifting theorems for regular residually irreducible p -adic Galois representations over F by relaxing the big image assumption on the residual representation.more » « less
-
HARRIS, Michael; KHARE, Chandrashekhar B.; THORNE, Jack A. (, Annales scientifiques de l'École Normale Supérieure)
-
Allen, Patrick; Calegari, Frank; Caraiani, Ana; Gee, Toby; Helm, David; Le Hung, Bao; Newton, James; Scholze, Peter; Taylor, Richard; Thorne, Jack (, Annals of Mathematics)
-
Böckle, Gebhard; Harris, Michael; Khare, Chandrashekhar; Thorne, Jack A. (, Acta Mathematica)
An official website of the United States government
